清华新闻网9月6日电 轻质且力学性能优异的先进材料在航天航空、交通运输和生物医疗等众多工程领域中都有着迫切的需求。作为力材料学(Mechanomaterials)范式的应用实例,三维点阵超材料通过主动的结构设计,为实现轻质且力学性能优异的先进材料提供了切实可行的路径。在实际工程应用中,结构材料不可避免地会面临制造或服役过程中产生的缺陷和裂纹,因此材料的断裂韧性,即抵抗裂纹扩展的能力,对于材料的实际应用尤为关键。然而目前对于三维点阵超材料的断裂行为和断裂机理的理解仍十分有限。如何通过结构设计得到低密度、高断裂韧性的三维点阵超材料是固体力学和材料科学领域的热点问题和重要挑战之一。
图1.典型的桁架和曲壳单胞结构及相应的点阵超材料的断裂测试结果
针对上述问题和挑战,bat365在线平台力学与工程交叉研究院研究团队与新加坡南洋理工大学对三维点阵超材料的断裂行为和断裂机理展开了合作研究。团队前期研究成果表明,新型的极小曲面点阵超材料可以实现超高的强度和比强度,这与其独特的拓扑结构密不可分。基于此,团队进一步研究了这种新型极小曲面点阵超材料的断裂行为,并与传统的桁架点阵超材料进行了系统的对比(图1)。结果表明,相比于被广泛研究的桁架点阵超材料,曲壳点阵超材料具有更高的断裂韧性,从而能够更好地抵抗裂纹扩展(图2)。在桁架点阵超材料中,由于节点处较强的应力集中,裂纹较为容易地通过节点的破坏沿着单胞依次扩展。相比之下,曲壳点阵超材料独特的拓扑结构能够更均匀地分布应力从而延缓裂纹扩展。研究团队进一步揭示了点阵超材料断裂中的三种能量耗散机制:材料的损伤破坏、结构的弹性振动耗散和材料的塑性耗散(图3)。有限元分析表明,曲壳点阵超材料优异的断裂韧性来源于其拓扑结构能够引起更大的断裂过程区,其通过上述三种机制耗散的能量均高于传统的桁架点阵超材料。该研究工作展示了曲壳点阵超材料的优异断裂韧性并揭示了其增韧机理,对后续通过拓扑结构设计得到轻质、高强韧的先进材料具有重要的指导意义。
图2.桁架和曲壳点阵超材料的断裂韧性和断裂行为对比
图3.点阵超材料断裂的能量耗散机制与拓扑诱导的内在增韧机理
8月30日,相关研究成果以“三维曲壳点阵超材料的优异断裂韧性与拓扑诱导的内在增韧机理”(Superior fracture resistance and topology-induced intrinsic toughening mechanism in 3D shell-based lattice metamaterials)为题,发表在《科学进展》(Science Advances)上。
bat365在线平台力学与工程交叉研究院高华健院士、李晓雁教授和新加坡南洋理工大学王一凡教授(Nanyang,Assistant Professor)为论文共同通讯作者;新加坡科技研究局(A*STAR)王宇嘉博士(航院2022届博士毕业生、现为南洋理工大学博士后)为论文第一作者。论文的其他合作者包括南洋理工大学博士生吴坤霖、北京大学工学院助理教授张璇。研究得到新加坡科技研究局、新加坡南洋理工大学杰出校聘教授基金、南洋助理教授基金等的支持。
论文链接:
https://www.science.org/doi/10.1126/sciadv.adq2664
供稿:航院
题图设计:赵存存
编辑:李华山
审核:郭玲